

Communication

Bi- and Terpyridyl Platinum(II) Chloro Complexes: Molecular Catalysts for the Photogeneration of Hydrogen from Water or Simply Precursors for Colloidal Platinum?

Pingwu Du, Jacob Schneider, Fan Li, Wei Zhao, Upali Patel, Felix N. Castellano, and Richard Eisenberg J. Am. Chem. Soc., 2008, 130 (15), 5056-5058 • DOI: 10.1021/ja711090w • Publication Date (Web): 20 March 2008 Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

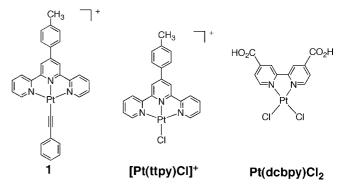
View the Full Text HTML

Published on Web 03/20/2008

Bi- and Terpyridyl Platinum(II) Chloro Complexes: Molecular Catalysts for the Photogeneration of Hydrogen from Water or Simply Precursors for Colloidal Platinum?

Pingwu Du,[†] Jacob Schneider,[†] Fan Li,[§] Wei Zhao,[‡] Upali Patel,[‡]

Felix N. Castellano,*,[‡] and Richard Eisenberg*,[†]


Department of Chemistry, University of Rochester, Rochester, New York 14627, Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Received December 13, 2007; E-mail: castell@bgsu.edu; eisenberg@chem.rochester.edu

Because of its potential role in the conversion of light energy into stored chemical potential, the photochemical generation of hydrogen from water, which corresponds to the reductive side of water splitting, has been the subject of much recent interest.¹ For molecular-based systems used to carry out this reaction, the key components include a metal complex sensitizer (most often a Ru(II) bipyridine chromophore), an electron transfer relay such as viologen, a sacrificial electron donor, and a hydrogen generating catalyst that is generally colloidal Pt.^{1a,2} Recent studies have described the use of platinum group metal complexes as molecular catalysts in place of colloidal platinum for greater efficiency and cost effectiveness.³ In some of the systems reported, a Pt(II) molecular catalyst is covalently linked directly to the sensitizer.⁴ In this communication, we describe studies involving Pt(II) complexes illustrating that these representative molecular catalysts actually undergo photodecomposition and are simply precursors to colloidal Pt which functions as the true H₂ generating catalyst.

It is known that platinized titanium dioxide (TiO₂) can produce large quantities of H₂ from aqueous protons in the presence of Na₂S, Na₂SO₃, or methanol under UV bandgap irradiation.⁵ Using similar systems that contain either TiO₂ with colloidal Pt or platinized TiO₂ in the presence of triethanolamine (TEOA, 336 μ mol) as the electron source, we have obtained similar results with 41 and 73 μ mol of H₂ generated, respectively, after only 2 h of TiO₂ bandgap irradiation (experimental details of all photolyses and analyses are given in Supporting Information).

When either Pt(dcbpy)Cl₂ (dcbpy = 4,4'-dicarboxyl-2,2'bipyridine) or [Pt(ttpy)Cl]⁺ (ttpy = 4-tolyl-2,2':6',2"-terpyridine) (Scheme 1) is employed in place of colloidal Pt, similar quantities of H₂ are observed (53 and 117 μ mol of H₂, respectively) under the same UV irradiation for 2 h. In another experiment involving a system comprising Pt(dcbpy)Cl₂ surfaceanchored to TiO₂ in 6:1 H₂O/MeOH with MeOH as the electron source, copious amounts of H₂ are detected upon UV bandgap irradiation. In fact, H₂ evolution results show that the Pt(dcbpy)Cl₂-TiO₂ system, which is 2% Pt complex by mass (approximately 1 wt % Pt), significantly *outperforms* platinized TiO₂ systems formed from either in situ photochemical reduction of H₂PtCl₆ or mixing of TiO₂ with platinum black. The results of such comparative photolyses are shown in Figure S1. For Scheme 1. Molecular Pt(II) Complexes Used to Generate H₂

the Pt(dcbpy)Cl₂-TiO₂ system, one can clearly observe vigorous and sustained H₂ bubbling from the photolysis solution. For both the Pt(dcbpy)Cl₂-TiO₂ system and the ones formed by platinizing TiO₂ with Pt black or in situ photochemical reduction of H₂PtCl₆, the efficiency of H₂ production optimizes at approximately 1 wt % Pt (Figure S1). Experiments performed at low light flux (4 mW, 365 nm) indicate that the Pt(dcbpy)Cl₂-TiO₂ system is 7.6 times more efficient at producing H₂ than the platinized TiO₂ systems generated as mentioned at ca. 1 wt % Pt metal (Figure S1).

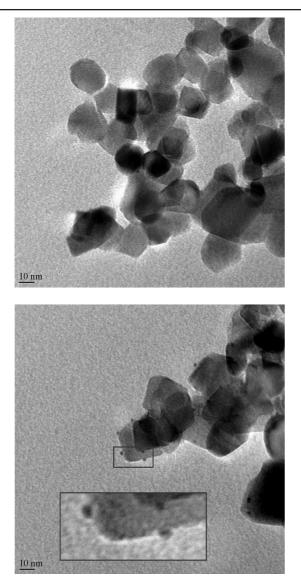
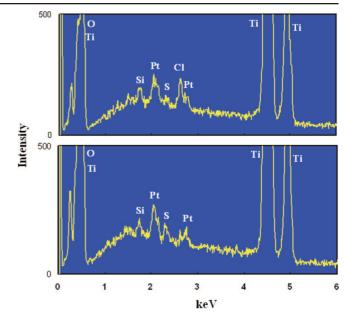
While these data suggest that the Pt(II) chloro complexes are acting as effective molecular catalysts for H₂ generation, TiO₂ samples isolated *after* the photolyses possessed a slightly gray cast, suggestive of noble metal formation. To examine this idea further, the Pt(dcbpy)Cl₂-TiO₂ system was exposed to bandgap light for 8 h, after which the material was isolated. All surfacebound Pt(dcbpy)Cl₂ was then removed by stirring the sample in 1 M NaOH for 8 h followed by washing and resumption of the photolysis. The data in Figure S2 show that the catalytic activity of the NaOH-treated and washed sample from which surface-bound Pt(dcbpy)Cl₂ was removed is quantitatively similar to that of the original surface-anchored "molecular" material, meaning that a catalyst other than the Pt(II) complex is active in the system.

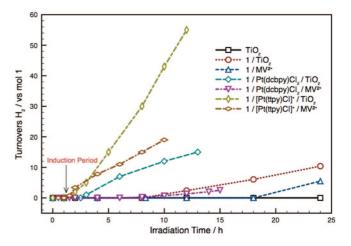
Examination of TEM images of another $Pt(dcbpy)Cl_2-TiO_2$ system both before and after UV irradiation (Figure 1) clearly shows the presence of nanoscopic particles on TiO₂ only *after* irradiation. These particles are 2–3 nm in diameter, compared with the Degussa P25 TiO₂ particles of ca. 25 nm on edge. The identity of these nanoscopic particles as colloidal Pt is supported by EDAX measurements, two of which are shown in Figure 2. In the top image of Figure 2, the EDAX spectrum of a sample

[†] University of Rochester.

^{*} Bowling Green State University.

[§] University of Minnesota.


Figure 1. TEM images of Pt(dcbpy)Cl₂ mixed with TiO₂ before (top image) and after UV irradiation (bottom) in the presence of TEOA.

of Pt(dcbpy)Cl₂-TiO₂ before irradiation shows both platinum and chlorine peaks, while in the bottom image of Figure 2, the EDAX spectrum of the same sample measured after irradiation reveals that while the Pt peak remains that arising from chlorine is no longer present. The EDAX results thus suggest that molecular Pt(dcbpy)Cl₂ on the surface of TiO₂ is no longer present. To support further the notion that the platinum peak in the EDAX of the irradiated sample is from platinum particles and not from bound Pt(dcbpy)Cl₂, a Pt(dcbpy)Cl₂-TiO₂ sample was treated with 1 M NaOH overnight to desorb the complex, followed by washing. This time the EDAX spectrum reveals no appreciable platinum present in the sample (Figure S7). On the other hand, for part of the same sample that was irradiated prior to treatment with 1 M NaOH, platinum peaks can be observed. The results thus indicate that the platinum signal does not arise from molecular Pt(dcbpy)Cl2 and instead corresponds to platinum particles formed on photodecomposition of the complex on the TiO₂ surface (Figure S8).

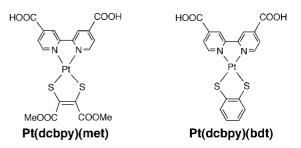
The question of whether the Pt(II) complexes can indeed function as hydrogen evolution catalysts under *less energetic* irradiation was next examined using the mercury test, known for its ability to inhibit catalysis by metal colloids and particles.⁶

Figure 2. EDAX spectra of the $Pt(dcbpy)Cl_2-TiO_2$ system before (top spectrum) and after (bottom spectrum) UV irradiation in the presence of TEOA. The S and Si peaks are the result of the substrate used to hold the sample.

Figure 3. Results from photolysis experiments ($\lambda > 410$ nm) containing TEOA with molecular Pt(II) complexes that show varying induction times until H₂ is observed.

Previously, [Pt(ttpy)(phenylacetylide)]⁺ (1) had been used as the chromophore in a multiple-component system for the lightdriven reduction of aqueous protons with $\lambda > 410 \text{ nm.}^7$ Specifically, a mixture of 1, TEOA, methyl viologen (MV²⁺), and colloidal Pt was found to yield 82 turnovers (TNs per mol 1) after 10 h of irradiation. When TiO₂ was substituted for MV²⁺ with $\lambda > 410 \text{ nm}$ irradiation, 94 TNs were obtained in 10 h, but when the same experiment was repeated with $\sim 2 \text{ mL}$ of Hg added to this system (1–TEOA–TiO₂–Pt colloid) and stirred for 10 h prior to irradiation, no H₂ was obtained. In these TiO₂-containing photolyses with $\lambda > 410 \text{ nm}$, 1 is clearly the photosensitizer, and the results show that added mercury effectively sequesters all colloidal platinum.

Replacement of colloidal Pt by either complex $[Pt(ttpy)Cl]^+$ or Pt(dcbpy)Cl₂ in photolyses containing **1** and MV²⁺ with λ > 410 nm still yielded H₂ generation but in reduced amounts (19 and 1 TNs, respectively, after 10 h irradiation, Figure 3). In parallel experiments using TiO₂ in place of MV²⁺ as the electron relay, 43 and 12 TNs were obtained, respectively, with $[Pt(ttpy)Cl]^+$ and $Pt(dcbpy)Cl_2$ (Figure 3). In the absence of these complexes, no appreciable H₂ was generated, indicating that they are essential for photodriven H₂ production. When the viologen-containing system $1-\text{TEOA}-\text{MV}^{2+}-[\text{Pt}(\text{ttpy})\text{Cl}]^+$ was stirred with Hg overnight followed by Hg removal prior to photolysis, no change in activity relative to the system without Hg treatment was seen, indicating that mercury does not capture, poison, or destroy the [Pt(ttpy)Cl]⁺ complex in contrast with its behavior with colloidal Pt.


With these results suggestive of catalysis by the Pt(II) complexes, additional Hg experiments were conducted with TiO₂-containing systems in which Hg was not removed from the system before irradiation (Figure S5). For 1-TEOA- TiO_2 -[Pt(ttpy)Cl]⁺, photolysis for 10 h with $\lambda > 410$ nm yielded only 9 TNs of H₂, compared with 43 TNs for the same system without Hg, and for 1-TEOA-TiO₂-Pt(dcbpy)Cl₂, only 2 TNs of H₂ were detected after 10 h, as opposed to the same system without Hg that yielded 12 TNs. Analogous experiments with MV^{2+} in place of TiO₂ gave comparable results. In light of the fact that Hg does not poison or adversely affect [Pt(ttpy)Cl]⁺ or Pt(dcbpy)Cl₂ prior to irradiation, the lower efficiency of H₂ production with Hg present likely results from Hg poisoning or sequestering in situ generated colloidal Pt from photodecomposition of the Pt(II) chloride complexes with $\lambda >$ 410 nm radiation.

A series of photolyses were next done to ascertain the photostability of the Pt(II) complexes used in these experiments. In fact, slow decomposition of the Pt acetylide chromophore is found on irradiation with >410 nm light. For a system containing only 1, TEOA, and TiO_2 or MV^{2+} but no hydrogen generating catalyst, irradiation with $\lambda > 410$ nm yields very small quantities of H₂ (Figure 3). In this system, the only source of Pt is 1, and there is no H₂ observed when 1 is omitted from the system. Furthermore, there is a substantial induction period prior to the observation of H₂ that is dependent on the electron relay in the system. For TiO_2 , this induction period is >8 h, while for MV^{2+} , it is at least 18 h. These results indicate that 1 undergoes slow photodecomposition with $\lambda > 410$ nm, but it is also moderately stable for at least 8 h. When these experiments are repeated with either $[Pt(ttpy)Cl]^+$ or $Pt(dcbpy)Cl_2$ as the "H₂ generating molecular catalyst", induction periods are again observed but the induction periods are shorter (2 and 3 h, respectively) and the quantities of H₂ generated substantially greater, consistent with greater rates of photodecomposition for the Pt chloro complexes. This conclusion is supported by a TEM image of the solid isolated from the system 1-TEOA-TiO₂-Pt(dcbpy)Cl₂ after photolysis which, like Figure 1 bottom, shows colloidal deposits on the TiO₂ surface (see Figure S6).

Recently, two Pt(II) diimine dithiolate sensitizers were reported that are capable of driving H₂ generation using visible light ($\lambda > 455$ nm) with no sign of chromophore decomposition for more than 175 h.8 The specific systems were composed of the sensitizer (either Pt(dcbpy)(met) (met = *cis*-1,2-dicarbomethoxyethylene-1,2-dithiolate) or Pt(dcbpy)(bdt) (bdt = 1,2benzendithiol) (Scheme 2), TEOA, and platinized TiO₂.

When either of the dithiolate sensitizers is used in a system containing TEOA, TiO₂, and the purported Pt(II) molecular catalysts and irradiated with >455 nm light, under which photodecomposition does not occur, no H₂ is formed. These observations further support the central notion that Pt(II)

Scheme 2. Pt(II) Sensitizers Used To Generate H₂ with $\lambda > 455$ nm

"molecular" catalysts for light-driven hydrogen generation are essentially precursors to Pt colloids that function as the actual catalysts.

This report therefore serves as a caveat to researchers employing noble metal complexes as H₂ generating catalysts that in fact photodecomposition of these complexes may be occurring and that the question of catalysis by the resultant colloids needs to be addressed rigorously. A similar message has just been reported involving a Pd complex "catalyst" less robust than the Pt systems reported here.⁹ Our study also reveals that surface-bound molecular Pt(II) complexes can function as photochemical precursors to segregated Pt(0) nanomaterials displaying enhanced hydrogen evolving power from TiO₂ surfaces.

Acknowledgment. The UR part of this work was supported by the Department of Energy, Division of Basic Sciences (DE-FG02-90ER14125), and the BGSU work was supported by the National Science Foundation (CHE-0719050), the ACS-PRF (44138-AC3), the Air Force Office of Scientific Research (FA9550-05-1-0276), and the BGSU Research Enhancement Initiative. P.D. gratefully acknowledges an Elon Huntington Hooker Fellowship, and J.S. gratefully acknowledges Weissberger Memorial and GAANN Fellowships from the UR. TEM images and EDAX measurements were carried out in the University of Minnesota Characterization Facility, which is partially supported by NSF through the NNIN program.

Supporting Information Available: Experimental details, and additional photocatalytic experiments, TEM images, and EDAX data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Esswein, A. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022-4047. (b) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729-15735.
- (2) (a) Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141–145. (b) Keller,
 P.; Moradpour, A.; Amouyal, E.; Kagan, H. B. Nouv. J. Chim. 1980, 4,
 377–384. (c) Kiwi, J.; Grätzel, M. Nature 1979, 281, 657–658. (d) Lehn, J.-M.; Sauvage, J.-P. Nouv. J. Chim. 1977, 1, 449-451.
- (3) (a) Elvington, M.; Brown, J.; Arachchige, S. M.; Brewer, K. J. J. Am. Chem. Soc. 2007, 129, 10644–10645. (b) Rau, S.; Schäfer, B.; Gleich, D.; Anders, E.; Rudolph, M.; Friedrich, M.; Görls, H.; Henry, W.; Vos, J. G. Angew.
- Chem, Int. Ed. 2006, 45, 6215–6218.
 (4) (a) Ozawa, H.; Haga, M.-A.; Sakai, K. J. Am. Chem. Soc. 2006, 128, 4926–4927. (b) Ozawa, H.; Yokoyama, Y.; Haga, M.-a.; Sakai, K. Dalton Trans. 2007, 1197–1206.
- (a) Galinska, A.; Walendziewski, J. Energy & Fuels 2005, 19, 1143-1147. (5)(b) Liu, H.; Yuan, J.; Shangguan, W. Energy & Fuels 2006, 20, 2289–2292.
 (6) (a) Anton, D. R.; Crabtree, R. H. Organometallics 1983, 2, 855–859. (b)
- Baba, R.; Nakabayashi, S.; Fujishima, A.; Honda, K. J. Phys. Chem. 1985, 89, 1902-1905.
- (7) (a) Du, P.; Schneider, J.; Jarosz, P.; Eisenberg, R. J. Am. Chem. Soc. 2006, 128, 7726–7727. (b) Du, P.; Schneider, J.; Jarosz, P.; Zhang, J.; Brennessel, W. W.; Eisenberg, R. J. Phys. Chem. B 2007, 111, 6887–6894.
 (8) Zhang, J.; Du, P.; Schneider, J.; Jarosz, P.; Eisenberg, R. J. Am. Chem. Soc. 2007, 140, 6726, 6720.
- 2007, 129, 7726-7729.
- Lei, P.; Hedlund, M.; Lomoth, R.; Rensmo, H.; Johansson, O.; Hammarström, L. J. Am. Chem. Soc. 2008, 130, 26-27
- JA711090W